
Physics Systems Platform

Script API
Platform Version 4.4.0alpha25

Robert M. DeLuca

support@physicssystems.com

Last Modified: 13-Nov-2017

NOTE: All examples assume the server is running under a Java 8 or greater runtime
environment. Java 7 and below is no longer supported.

mailto:support@physicssystems.com

Physics Systems Script API Page 2

T A B L E O F C O N T E N T S

Scripting Overview..7
Client Side Scripting..7
Server Side Scripting..7
Synchronous vs. Asynchronous..8
Advanced Example: Running a Command Inside a Thread (Server Side)............................8
Printing Messages To Remote Builder's Console Log..9
Example: Printing To Remote Builder's Console Log (Server Side).......................................9

Exception Handling...10
Server Side Exceptions..10
Example: Exception Handling in Server Side Scripts...10
Client Side Exceptions..10
Example: Checking for Exceptions in Client Side Scripts..11
The Exception Object...11
getType()...11
getMessage()..11
Exception Types..12

Access Denied..12
Command Failed..12
Command Not Supported...12
Does Not Exist..12
Invalid Command..12
Invalid Destination..12
Timed Out...12

Basic API Commands...13
API.getUsername()...13
API.wolWakeUp(physicalAddress)...13

Alerts..14
How Alerts Reach Users...14
Alert Properties...15
Testing Alert Notifications..15
API.testNotifications()...15
Temporarily Muting Alert Notifications..16
API.muteNotifications(duration)..16
Generating Alerts..16
API.alert(typeName, deviceName, message)..16
Example: Generating an Alert (Server Side)..17
Example: Generating an Alert and Handling Errors (Client Side)..17

The Stack...18
STACK.push(value)..18
STACK.pop()...18
STACK.peek()...18

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 3

STACK.size()...18
Example: Using the Stack (Server Side)..18
Command Responses on the Stack...19
Example: Working With Command Responses (Server Side)...19

Global Values...20
API.saveGlobalValue(name, value)..20
API.loadGlobalValue(name)...20
API.deleteGlobalValue(name)..20
Example: Saving and Loading Global Values (Client Side)..20
Example: Saving and Loading Global Values (Server Side)..21

GPIO Commands...22
GPIO.getPinState(commanderName, pin)...22
Example: Displaying the State of a GPIO Pin (Client Side)...22
Example: Displaying the State of a GPIO Pin (Server Side)..23

Relay Commands..24
Relay.turnOn(commanderName, relayNumber)...24
Relay.turnOff(commanderName, relayNumber)...24
Relay.toggle(commanderName, relayNumber)..24
Relay.momentaryToggle(commanderName, relayNumber, duration)..................................24
Relay.momentaryOnOff(commanderName, relayNumber, duration)...................................24
Relay.momentaryOffOn(commanderName, relayNumber, duration)...................................24
Relay.isRelayOn(commanderName, relayNumber)...24

Timer Commands..25
Timer Ownership...25
Timer.start(timerName, unitOfTime, duration, macroName)..25
Timer.cancel(timerName)..25
Timer.increment(timerName, unitOfTime, amount)..25
Timer.decrement(timerName, unitOfTime, amount)...26
Timer.getTimeLeft(timerName, unitOfTime)...26
Example: Displaying the Date and Time when a Timer Will Run (Client Side)....................26

Macro Commands...28
Macro.run(macroName)..28

Client Side..28
Example: Message Passing to and from Macros (Client Side)..28

Server Side...29
Macro.abort()..29
Macro.restart()..29
Example: Looping a Macro Three Times..29
Macro.skipNextStep()...29

Component Property Commands..30
API.getComponentPropertyValue (componentName ,propertyName
,<responseCallbackFunction> ,<arguments...>)..30
API.setComponentPropertyValue (componentName ,propertyName ,value

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 4

,<responseCallbackFunction> ,<arguments...>)..30
Example: Setting a Component Property Value (Client Side)..30

Component Commands..31
API.runComponentCommand(componentName, commandName, arguments...)...............31
Example: Running Component Commands (Server Side)...31
Example: Running Component Commands (Client Side)..31

Matrix Commands...32
API.matrixGetDescription(matrixName)...32
API.matrixSetCurrentSourceByName..33
 (matrixName..33
 ,dstPortName...33
 ,srcPortName)..33
API.matrixGetCurrentSourceName(matrixName, dstPortName)...33
Example: Setting the current source port of a destination on the matrix.............................33
Example: Getting the current source port of a destination on the matrix (Server Side).......33
Example: Getting the current source port of a destination on the matrix (Client Side)........33
API.matrixGetCurrentDestinationNames..34
 (matrixName..34
 ,srcPortName...34
 ,<responseCallbackFunction>)..34
API.matrixConnectToDefaultVLANByName(matrixName, dstPortName)............................34

Internal APIs..35
Internal API Basics..36

Internal API...36
Internal Device..36
Internal Device API...36

Internal Device API Basics..37
getPropertiesJSON()...37
Example: Using getPropertiesJSON() to do Device Capability Detection...........................38
Example: Using getPropertiesJSON() With Devices that Support Multiple APIs.................39

Internal Device API: Thermostat..40
JSON Properties...40
API Commands...41
API.Thermostat.isModeAllowed(name, mode)...41
API.Thermostat.getMode(name)..41
API.Thermostat.setMode(name, mode)...41
API.Thermostat.getScale(name)..41
API.Thermostat.setScale(name, scale)..41
API.Thermostat.getAmbientTemperature(name, scale)...41
API.Thermostat.getHumidity(name)...41
API.Thermostat.getTargetTemperature(name, scale)..41
API.Thermostat.setTargetTemperature(name, temperature, scale).....................................41
API.Thermostat.getTargetTemperatureHigh(name, scale)...42

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 5

API.Thermostat.setTargetTemperatureHigh(name, temperature, scale).............................42
API.Thermostat.getTargetTemperatureLow(name, scale)..42
API.Thermostat.setTargetTemperatureLow(name, temperature, scale)..............................42
API.Thermostat.getEcoTemperatureHigh(name, scale)...42
API.Thermostat.getEcoTemperatureLow(name, scale)..42

Internal Device API: FireAlarm...43
JSON Properties...43
API Commands...43
API.FireAlarm.getBatteryState(name)..43
API.FireAlarm.getAlarmState(name, alarmType)...43

Internal Device API: Light...44
JSON Properties...44
API Commands...45
API.Light.isOn(name)...45
API.Light.setOn(name, on)...45
API.Light.getBrightness(name)...45
API.Light.setBrightness(name, brightness)..45
API.Light.getColorRGB(name)...45
API.Light.setColorRGB(name, red, green, blue)..45
API.Light.getColorTemperature(name)...45
API.Light.setColorTemperature(name, temperature)...45

Internal Device API: TV...46
JSON Properties...46
API Commands...47
API.TV.isOn(name)...47
API.TV.setOn(name, on)...47
API.TV.getInput(name)...47
API.TV.setInput(name, input)..47
API.TV.getVolume(name)...47
API.TV.setVolume(name, volume)..47
API.TV.volumeUp(name)..47
API.TV.volumeDown(name)..47
API.TV.getVolumeMaximum(name)..47
API.TV.isMuted(name)..47
API.TV.setMuted(name, muted)...47
API.TV.toggleMute(name)...48
API.TV.displayMessage(name, message)..48
API.TV.displayMessageWithImageById(name, message, imageId)....................................48
Example: Displaying a Pizza on a WebOS TV...48
API.TV.launchBrowser(name, URL)...48

Server Side Only Commands...49
API.runCommanderCommand(commanderName, commandName, arguments...)............49
API.addDynamicResource(name, resourceBytes, resourceType).......................................49

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 6

API.getDynamicResourceData(name)...49
API.getDynamicResourceType(name)...49
API.removeDynamicResource(name)..49
API.sendEmail(recipient, subject, message)..49

Client Side Only Commands..50
API.setLabelValue(labelScriptId, value)...50
API.setLabelImage(labelScriptId, imageId)..50
API.setLabelImageURL(labelScriptId, imageURL)...50
API.setLabelVisible(labelScriptId, visible)..50
API.setButtonVisible(buttonScriptId, visible)..50
API.setButtonLabel(buttonScriptId, label)...51
API.setButtonImages(buttonScriptId, upImageId, downImageId)..51
API.setSliderVisible(sliderScriptId, visible)...51
API.jumpToPage(pageScriptId)..51
API.goBack()...51
API.logout()...51
Slider commands..52
API.Slider.setValue(sliderScriptId, value)...52
API.Slider.assignProperty(sliderScriptId, apiName, deviceName, propertyName)..............52

Currently Assignable Internal Device API Properties...52
Example: using API.Slider.assignProperty()...52

Dynamic Page Loading...53
API.loadPage(pageScriptID, handler)..53
API.showPage(page, x, y, zIndex)..53
Example: Loading and Displaying a Page Dynamically (Client Side)..................................54
API.makePageBackgroundTransparent(page)...54
API.hidePage(page)..54
API.unloadPage(page)...54

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 7

S C R I P T I N G O V E R V I E W

The Physics Systems Platform is tremendously extensible. When Remote Builder's drag-and-
drop GUI isn't enough, you also have the ability to create widgets and modules as well as
script both the client (user interface) devices and the server. Widget creation is documented in
the “Widget Specification”. Modules are documented elsewhere. This manual covers the
functionality provided by the platform API to client and server side scripts.

Server side and client side scripts are both written in JavaScript, but their execution
environments are very different. They also serve different purposes:

Client Side Scripting
The primary purpose of client side scripting is to enhance the user interface. Client side
scripts run directly on the device being used as a remote control (for instance, a tablet). They
run within an HTML5 / CSS3 web browser environment and thus have access to the HTML
DOM, AJAX and other HTML5 technologies. Some of the uses of client side scripts include:

• Performing animation

• Hiding and showing pieces of the interface

• Responding to gestures

• Updating the interface to display the current state of the system

In general, client side scripting should focus on the user interface and allow macros / server
side scripts to handle everything else.

Server Side Scripting
The primary purpose of server side scripts is to decouple the user interface devices from the
execution of complex or long running series of commands. Server side scripts run directly on
the automation controller (Installation Server or Remote Builder) and thus are not subject to
the same network and reliability issues that affect client side scripts.

Server side scripts exist as one or more steps within a macro. They have the ability to change
their behavior according to previous steps as well as alter or abort the execution of future
steps. They run within a Java virtual machine and have access to most of the Java 8 SE API,
in addition to the standard ECMAScript functionality.

As such, they are a double-edged sword of power and danger. Although they are currently
jailed so that they cannot access the controller's file system or run forever, a poorly written
script still has the potential to render an Installation Server unresponsive for a period of time,
possibly requiring a reboot. Complex server side scripts should be vetted with Remote Builder
before being uploaded.

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 8

Synchronous vs. Asynchronous
In order for the user interface to remain interactive, API commands called from a client side
script run asynchronously. When you use an API command on the client, it operates in the
background while your script immediately continues running.

API commands called from a server side script are synchronous. Each command will block
the script until it has completed (and returned a response, if one was expected). If you need
asynchronous behavior in server side scripts, that can be achieved using threads (see below
example).

Because of the synchronous/asynchronous distinction, API commands that return a response
are used differently depending on where they are being called. Client side scripts use
response callback functions to return their result whereas server side scripts return their result
directly.

The differences are shown in detail by these two examples: Example: Displaying the State of
a GPIO Pin (Client Side), Example: Displaying the State of a GPIO Pin (Server Side).

Advanced Example: Running a Command Inside a Thread (Server Side)
This example prints the message “ONE” to the console, (usually) followed by the message
“TWO”:

var thread = new java.lang.Thread(new java.lang.Runnable() {
 run: function() {
 java.lang.Thread.sleep(100);
 print("TWO");
 }
});

thread.start();
print("ONE");

Some important notes about threading on server side scripts:

• Threads are not guaranteed to run in any particular order. The above example, for
instance, could actually print "TWO" before it prints "ONE"

• Long running threads run the risk of their execution context being re-used before the
thread completes. You should not count on the global scope that existed before the
thread was executed being the same as when it finally executes.

• Threads bypass the built-in script maximum allowed run time protection. In other
words, the server will normally terminate a script that attempts to run for longer than
five minutes. This detection does not operate on any script run within a separate
thread, so threaded script has the potential to permanently tie up one or more CPUs on
the server if they have a bug.

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 9

Printing Messages To Remote Builder's Console Log
Server side scripts can print messages to Remote Builder's console log (available in the
Window menu) using the print() function. These print statements are safe to leave in code
uploaded to the Installation Server.

Example: Printing To Remote Builder's Console Log (Server Side)
For example, the following server side script will display “Hello World!” in Remote Builder's
console log when its parent macro is run:

print("Hello World!");

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 10

E X C E P T I O N H A N D L I N G

The API commands throw various exception objects when errors occur. By responding to
exceptions, you can create robust installations that handle failures gracefully instead of
seemingly doing nothing or bombarding the user with error messages.

Exceptions are utilized differently depending on whether the script is server side or client side.

Server Side Exceptions
You can catch exceptions directly using a try/catch block. Thrown API exceptions are
instances of com.physicssystems.publicapi.InstallationServerException.

Example: Exception Handling in Server Side Scripts
 Here's an example that intentionally attempts to access a commander that doesn't exist:

print("Attempting to access an invalid commander");

try {
GPIO.getPinState("Non Existent Commander",1);

} catch(e) {
if(e instanceof com.physicssystems.publicapi.InstallationServerException) {

print("EXCEPTION TYPE: "+e.getType());
print("EXCEPTION OCCURRED: "+e.getMessage());

}
}

The output from this would be something similar to:

Attempting to access an invalid commander

EXCEPTION TYPE: Does Not Exist

EXCEPTION OCCURRED: commander Non Existent Commander does not exist

Client Side Exceptions
On the client side, you have to wait for the response callback function to be called in order to
get the exception. Every API command can use a response callback function, even one-way
commands that don't return a response (the server still returns “OK” for one-way commands).
By checking the isException field of the response object, which is always the first argument
passed to the callback function, you can tell if the response is an exception or not.

You are not required to use response callbacks. If you don't pass a callback function to an API
command and an exception occurs, the user will be alerted with a detailed error message.

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 11

Example: Checking for Exceptions in Client Side Scripts
This example first inquires the current state of relay 1 on the commander named “Main
Commander”. When the response callback (callbackFunction) is called, it will display the
response. Then, the script attempts to turn on an invalid relay, passing the callback function in
order to check for success or failure:

function callbackFunction(response) {
 if(response.isException) {
 alert("An error occurred: "+response);
 return;
 }
 alert(“Command executed properly. Here's the response: “+response);
}
Relay.isRelayOn("Main Commander",1,callbackFunction);
// Attempt to turn on the 12,345th relay, which obviously doesn't exist
Relay.turnOn("Main Commander",12345,callbackFunction);

The Exception Object
On both the client and the server, exception objects provide these methods:

getType()

This returns a terse description of the exception such as “Access Denied” or “Command
Failed”.

getMessage()

This returns the actual error message, which is usually a helpful explanation of the problem
according to the server.

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 12

Exception Types
These are the possible values returned by getType():

Access Denied
The user does not have access to the resource.

Command Failed
The command failed for a reason that could not be classified under one of the other possible
exceptions. This is usually thrown when hardware or network errors occur.

Command Not Supported
If this is being thrown then you are attempting to do something that is not supported. This
should never occur during normal use.

Does Not Exist
The resource you are attempting to use does not exist. Generally, this would indicate
whatever name you provided did not match anything.

Invalid Command
You are trying to execute an invalid command. This should not occur during normal use.

Invalid Destination
The port, pin or relay number you specified is invalid.

Timed Out
The device did not respond to the server in time.

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 13

B A S I C A P I C O M M A N D S

Simple stuff.

API.getUsername()

Returns the username of the user running the current script. Note, macros run by the
scheduler are always run by the user “Scheduler.” Macros run by triggers are always run by
the user “Trigger.”

API.wolWakeUp(physicalAddress)

Attempts to wake up the network device with the physical (MAC) address physicalAddress
according to the Wake-on-LAN (WoL) standard. WoL must be supported and properly
configured on the target device in order for this command to work.

For convenience, the physical address may be specified with or without colons, dashes and
spaces. The user invoking this command must have the "WoL" API privilege.

WoL "magic packets" are usually not routed to alternate subnets by default, so the server
must be on the same subnet as the target device.

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 14

A L E R T S

The alert system is used to inform users of a significant error or event, for instance, losing
connection to a camera or an inability to contact PSNET. Once generated, alerts are logged
into the alert history and have the potential to trigger one or more notifications, dependent
upon each user's notification settings.

How Alerts Reach Users
Users can become aware of alerts via two methods: accessing the built-in alert history page
(available at the top-level URI http://<SERVERADDRESS>/alerts) and notifications.

The built-in alerts page requires the user to periodically check it in order to discover new
alerts whereas notifications attempt to contact the user in real-time to inform them of an alert.

It is important to note that good practice requires that both methods are utilized.
Notifications are not guaranteed to be sent on each alert or reach the user for multiple
reasons:

1. Notifications are rate-limited. A (customizable) period of time must elapse between the
sending of two notifications to the same user. Rate limiting is done by alert type, by
device name AND by each particular method of notification delivery (notification
services such as Gmail, SMS and Apple Push Notifications). Rate limiting is done by
alert type and device name to prevent hogging of the available notifications (say if a
particular camera keeps failing), and rate limiting of each notification delivery method is
done to prevent their respective services from banning the notification account.

2. Notifications will fail to send if the server does not have an active connection to the
Internet. Notifications DO NOT queue up and wait for delivery to be successful! If a
notification fails to send, there is no retry. This is to prevent flooding of notification
services that will result in temporary (or permanent) bans.

3. Notifications depend upon the reliability of whatever service they utilize. For instance, if
Gmail is down or overload at the time of a notification that uses Gmail, the notification
will fail to send. Likewise, Google may enforce a policy change at any time that blocks
sending of all emails for a certain (or perhaps indefinite) period of time.

Notifications are sent directly from the originating machine that the alert was generated on -
they do not go through PSNET first. This is done to reduce the number of potential failure
points when sending notifications. For this reason, some caution must be utilized if re-using
the same notification service account on multiple servers because each server is not aware of
the other's notifications and can not properly enforce an account-wide rate limit.

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 15

Alert Properties
Alerts have the following properties:

• Timestamp – when the alert was generated. This is handled automatically by the
system.

• Subsystem – Installation Server has multiple subsystems such as the NVR, Scheduler
and PSNET. Alerts indicate which subsystem they originated from. Alerts generated by
the API (see below) always have a subsystem of "CUSTOM." This is done so that
internally generated alerts by the system are never confused with custom alerts.

• Type Name – in addition to the subsystem, alerts are categorized by their type name
(e.g., "Camera Down", "I/O Error" or "Connect Failed"). The subsystem and type
name combined indicate the alert type. This is necessary because some type
names may be present in multiple subsystems (such as "I/O Error" – I/O error of
what?)

• Device Name – some alert types are device specific (e.g., "Camera Down"). When
those alerts are generated they will include the name of the device that triggered them.

• Message – includes additional details about what triggered the alert. For instance, a
"Camera Down" alert might indicate that a read timeout occurred after a period of time.
A "Camera Connection Failed" alert might tell the user that the camera couldn't
contacted at its current IP address, or is refusing to operate as expected by the
system.

Testing Alert Notifications
The alert notification system can be tested at any time on both client and server side with this
command:

API.testNotifications()

This generates a test alert that will be added to the alert history. All users who are configured
to receive alert notifications on the current system will receive a test notification via each
enabled delivery method.

NOTE: the alert system is rate limited to prevent notifications for system test alerts from being
sent more often than once per 60 seconds. Attempts to initiate another test before this time
has elapsed will not trigger notifications. This rate limiting IGNORES each user's individual
rate limits for alert type and device. Delivery method rate limits ARE taken into account
however.

The user calling this function must have the "Alerts → API" privilege or an
AccessDeniedException will be thrown.

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 16

Temporarily Muting Alert Notifications
Sometimes it is helpful to be able to prevent notifications from being generated by alerts on a
live system. To do this you may use the following command both client and server side:

API.muteNotifications(duration)

This will mute notifications for duration seconds. Any alerts generated while the mute is in
effect will not trigger notifications. Durations of 0 or less will immediately un-mute notifications.

NOTE: muting will NOT prevent notifications from being generated by system tests i.e. via
API.testNotifications().

On success, "OK" is returned server side, and client side the first argument of the handler
function will have the value "OK". On failure, a CommandFailedException is thrown (server
side) or is passed as the first argument of the response handler function (client side).

The user calling this function must have the "Alerts → API" privilege or an
AccessDeniedException will be thrown.

Generating Alerts
Alerts can be generated both client and server side with the same command:

API.alert(typeName, deviceName, message)

This generates an alert with type name typeName, device name of deviceName and with
message message. If the alert should not specify a device, use null for deviceName.

On success, "OK" is returned server side, and client side the first argument of the handler
function will have the value "OK". On failure, a CommandFailedException is thrown (server
side) or passed as the first argument to the response handler function (client side). Because
of the importance of alerts, failure is not normal on a properly functioning system, and
indicates either an inability to contact the server (client side) or that the alert system is so
overloaded with alerts it can not queue up any more. This is usually indicative of catastrophic
failure.

Success does not indicate a notification was or will be sent!

The user must have the "Alerts → API" privilege or an AccessDeniedException will be
thrown.

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 17

Example: Generating an Alert (Server Side)
The following snippet will generate an alert with no device, and then another one with a
device. Depending on the rate limit settings, only one (or neither) will trigger a notification:

API.alert("Test Alert", null, "This is the message");
API.alert("Test Alert", "Test Device", "This is the message");

Example: Generating an Alert and Handling Errors (Client Side)
The previous server side example will work fine on the client side too, and will suffice for most
purposes. If you want to know if the alert was generated successfully on the system, the
following snippet will work:

API.alert
("Test Alert"
,"Test Device"
,"This is the message"
,function(response,typeName,deviceName,message) {

if(response.isException) {
console.log("Failed to generate alert: "+response);
console.log(" Alert type name: "+typeName);
console.log(" Alert device name: "+deviceName);
console.log(" Alert message: "+message);
return;

}

if(response === "OK") {
console.log("Alert generated successfully");
return;

}

// neither an exception was returned nor "OK", something is wonky!
console.log("Unexpected response to API.alert(): "+response);

});

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 18

T H E S T A C K

Server side scripts have access to a stack variable called STACK that can be used to pass
values back and forth between steps. The contents of the stack are preserved during the
entire execution of a macro (including nested macros).

STACK.push(value)

Pushes the given value onto the top of the stack.

STACK.pop()

Removes the topmost value from the stack and returns it.

STACK.peek()

Returns the value at the top of the stack but doesn't remove it.

STACK.size()

Returns how many elements are on the stack.

Example: Using the Stack (Server Side)
This simple example passes some numbers from one script to the next. The first script
pushes the numbers 2 and 50 onto the stack. The second script pops the stack and checks to
see if the value is 50 and prints a message indicating success:

Script 1:

STACK.push(2);
STACK.push(50);

Script 2:

if(STACK.pop() == 50)
 print("Yes, the number 50 was on the top!");
else
 print("No, the number 50 wasn't on the top!");

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 19

Command Responses on the Stack
Component command actions that are set to return a response will push the response as an
array of bytes onto the stack. This allows you to use the GUI to drag-and-drop component
commands into a macro and then use scripts to process their responses. If the response is
supposed to be an ASCII string, it can be converted from an array of Java bytes to a Java
String like this:

var response = new java.lang.String(STACK.pop());

Now the variable response can be compared to or concatenated with a normal JavaScript
string.

Example: Working With Command Responses (Server Side)
This example prints the current volume level of a Pioneer receiver. It uses Java pattern
matching to look for and retrieve it from the response to the previous command (“?V”). The
receiver returns the volume level as “VOLXXX” (without the quotes), where XXX is a number.
For example, “VOL074”.

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 20

G L O B A L V A L U E S

The script API provides a way to permanently store small, globally accessible values on the
server. These values will persist through reboots of the installation server and are not
removed when a installation XML is uploaded. They are not stored inside the installation XML,
so any values saved in your development environment (i.e., when hosted from Remote
Builder), will not carry to the installation server from an upload.

The API is capable of properly saving and loading booleans, numbers and strings. Any other
types (such as a Date) must be converted to one of the three basic types in order to be stored
properly. String values larger than 4096 characters will be truncated when saved.

Global values are not unique per user. Any user who has access to global values can
overwrite, load and delete global values set by any other user. Global values are available in
platform versions 1.1 and above. The following API commands are available on both the client
and server:

API.saveGlobalValue(name, value)

Saves the given value under the name name, where name is a string and value is either a
boolean, a number or a string. Throws a CommandFailedException if an error occurred
while saving the value. On the client-side, the response value returned to the handler will be
“OK” on success.

API.loadGlobalValue(name)

Retrieves the given global value named name. Returns null if no value is saved under that
name.

API.deleteGlobalValue(name)

Deletes the global value named name. Afterwards, any calls to loadGlobalValue() with that
name will return null until a new value is saved. It is your responsibility to delete global values
you no longer need.

Example: Saving and Loading Global Values (Client Side)
The following client-side script implements two functions. saveDate() saves the current date
and time into the global value “date”, loadDate() displays the saved date:

function saveDate() {
 var date = new Date();

 API.saveGlobalValue
 ("date"
 ,date.getTime() // Convert the date into milliseconds
 ,function(response,name) {

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 21

 if(response == "OK") {
 alert(“Saved date is: “+date);
 loadDate();
 }
 });
}

function loadDate() {
 API.loadGlobalValue
 ("date"
 ,function(response,name) {
 var date = new Date();
 date.setTime(response);
 alert("Loaded date is: "+date);
 });
}

Example: Saving and Loading Global Values (Server Side)
Here is the server-side version of the previous script:

function saveDate() {
 var date = new Date();
 API.saveGlobalValue("date",date.getTime());
 print("Saved date is: "+date);
}

function loadDate() {
 var date = new Date();
 date.setTime(API.loadGlobalValue("date"));
 print("Loaded date is: "+date);
}

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 22

G P I O C O M M A N D S

These commands are available in both client and server side scripts.

GPIO.getPinState(commanderName, pin)

Reads and returns the current state of the given GPIO pin. This value will be 1, 0 or -1. -1
indicates the current state could not be determined.

Note that the way this value should be interpreted depends on what type of device the
commander is. For instance, on Global Caché units, 1 could mean either the IR pin is being
held high OR is disconnected, and 0 indicates the IR pin is definitely being held low.

This command returns a response, and thus is used differently on the client side vs. server
side.

Example: Displaying the State of a GPIO Pin (Client Side)
The following client script will pop up a dialog box informing you what the current state of pin
#2 is on commander “Main”:

// This function will be called when the pin state is returned by
// the server. Note that the arguments passed to the original
// GPIO.getPinState() command are also passed to the callback function.
function pinStateCallback(response, commanderName, pin) {
 // Check if the response is an exception object
 if(response.isException) {
 alert("An error occurred: "+response);
 return;
 }

 switch(response)
 {
 case 1:
 alert("Pin #"+pin+" is high");
 break;
 case 0:
 alert("Pin #"+pin+" is low");
 break;
 default:
 alert("The state of pin #"+pin+" could not be determined");
 break;
 }
}

// Do the API commmand. Wrapped in a try/catch block so that script
// execution is not disabled if an error occurs.
try {
 GPIO.getPinState("Main (GC-100-12)", 5, pinStateCallback);

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 23

} catch(e) {
 alert("Failed to connect to server: "+e);
}

Example: Displaying the State of a GPIO Pin (Server Side)
The following example is similar to the client side one, but it prints the current pin state to
Remote Builder's console log:

try {
 switch(GPIO.getPinState("Main (GC-100-12)",5))
 {
 case 1:
 print("Pin #5 is high");
 break;
 case 0:
 print("Pin #5 is low");
 break;
 default:
 print("The state of pin #5 could not be determined");
 break;
 }
} catch(e) {
 print("An error occurred: "+e);
}

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 24

R E L A Y C O M M A N D S

All relay commands operate on a specific commander and relay. The commander is specified
by name as a quoted string, case insensitive and whitespace is trimmed. The relay is
specified by its number, with 1 being the first relay of the commander.

These commands are available in both client and server side scripts.

Relay.turnOn(commanderName, relayNumber)

Activates the relay (turns it ON).

For example, to activate relay #4 on commander “Master Bedroom”:

Relay.turnOn("Master Bedroom", 4);

Relay.turnOff(commanderName, relayNumber)

Deactivates the relay (turns it OFF).

Relay.toggle(commanderName, relayNumber)

Toggles the state of the relay. If the relay was ON before, it will be OFF after this command,
and vice versa.

Relay.momentaryToggle(commanderName, relayNumber, duration)

Toggles the relay, waits the specified duration and then toggles the relay back to its original
state. At the conclusion of this command, the relay will be in the same state that it was before
the command.

The duration is specified in milliseconds. Durations greater than 30000 (30 seconds) are not
permitted.

Relay.momentaryOnOff(commanderName, relayNumber, duration)

Turns the relay ON, waits the specified duration and then turns the relay OFF. Duration is in
milliseconds and may not be greater than 30 seconds.

Relay.momentaryOffOn(commanderName, relayNumber, duration)

Turns the relay OFF, waits the specified duration and then turns the relay ON. Duration is in
milliseconds and may not be greater than 30 seconds.

Relay.isRelayOn(commanderName, relayNumber)

Returns a boolean true if the relay is definitely ON, false otherwise.

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 25

T I M E R C O M M A N D S

Timers allow a macro to be run once at a later time. All timer commands refer to timers by an
exact name of your choosing. When specifying a timer name in script, it must be a quoted
string. Timer names are case insensitive and leading/trailing whitespace is trimmed.

Timer commands that indicate a duration or amount of time require the unit of time to
specified. Accepted values are Timer.MILLISECONDS, Timer.SECONDS, Timer.MINUTES,
Timer.HOURS and Timer.DAYS.

These commands are available in both client and server side scripts.

Timer Ownership
For security purposes, timers belong to the user who started them. For instance, if user “Bob”
starts a timer named “Set Alarm”, user “Alice” cannot see or change Bob's timer. In fact, Alice
is free to start her own timer named “Set Alarm”, which will run independently of Bob's timer.

Timers started inside macros belong to the user who ran the macro. If the macro was run by
the scheduler, no user can access the timer (but other macros run by the scheduler can).

Timer.start(timerName, unitOfTime, duration, macroName)

Schedules a timer to run after the given duration has elapsed. Durations must be whole
numbers (no decimals). If a timer with the same name was already scheduled (and hasn't run
yet), it will be replaced.

For example, to schedule a timer named “Sleep” that will run the macro named “System Off”
in 30 seconds:

Timer.start("Sleep", Timer.SECONDS, 30, "System Off");

Timer.cancel(timerName)

Cancels the timer.

Timer.increment(timerName, unitOfTime, amount)

Adds the given amount of time to the timer. The new amount of time remaining will be
returned.

The amount of time must be a whole number, but it may be negative (indicating time should
be removed instead of added).

A timer that is decremented so far that its remaining time becomes negative will execute
immediately.

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 26

Timer.decrement(timerName, unitOfTime, amount)

Removes the given amount of time from the timer. The new amount of time remaining will be
returned.

A timer that is decremented to run in the past will execute immediately.

Timer.getTimeLeft(timerName, unitOfTime)

Returns the amount of time remaining before the given timer will execute its macro. If no timer
with the given name is scheduled to run (or has already run), -1 will be returned.

Note that partial durations are not returned. For example, if there are 45 seconds left on a
timer and you request the time left in MINUTES, 0 will be returned, not 1 or 0.75.

Example: Displaying the Date and Time when a Timer Will Run (Client Side)
The following client script will pop up a dialog box telling you approximately what time and
date the timer “Sleep” will run:

function timerTimeLeftCallback(response,timerName,unitOfTime) {
 if(response.isException) {
 alert("An error occurred: "+response);
 return;
 }

 if(response == -1) {
 alert("Timer '"+timerName+"' is not set");
 return;
 }

 switch(unitOfTime) {
 case Timer.MILLISECONDS:
 break;
 case Timer.DAYS:
 response *= 24;
 case Timer.HOURS:
 response *= 60;
 case Timer.MINUTES:
 response *= 60;
 case Timer.SECONDS:
 response *= 1000;
 break;
 }

 var now = new Date();
 var when = new Date(now.getTime() + response);

 alert
 ("Timer '"+timerName+"' will run on "

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 27

 + when.toLocaleDateString()
 + " at "
 + when.toLocaleTimeString());
}

Timer.getTimeLeft(“Sleep”,Timer.SECONDS,timerTimeLeftCallback);

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 28

M A C R O C O M M A N D S

Macro script commands function differently depending on whether they are called from server
side or client side scripts.

Macro.run(macroName)

Runs the specified macro immediately. Macro names are quoted strings, case insensitive and
whitespace is trimmed. The behavior of this command depends on whether it is called from a
client or server side script:

Client Side
When called from a client script, this command will return immediately and the specified
macro will execute independently. You can pre-populate the macro's stack by passing
parameters to run(), but if you wish to do this, you must provide a value for the callback
function (you can use null if you don't want to use a callback). The parameters you provide
are pushed onto the stack in the order that you provide them.

When the macro has finished running, the top element of the stack is returned to the
response callback function. If the stack is empty when the macro finishes, the message “OK”
is returned instead.

Example: Message Passing to and from Macros (Client Side)
First, create a macro named “Multiply” that has this server side script:

var a = parseInt(STACK.pop());
var b = parseInt(STACK.pop());
STACK.push(a*b);

Now on the client side, this script will display an alert with the result of multiplying 35 times 27:

Macro.run
 ("Multiply"
 ,function(response) {
 alert("Answer is: "+response);
 }
 ,35,27);

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 29

Server Side
If called from a server side script, run() will not return until the specified macro has finished.
The sub macro has access to the same stack as the calling macro.

For example, to run the macro named “Turn Sprinklers On” from a server side script:

Macro.run("Turn Sprinklers On");

Macro.abort()

Terminates the current macro and attempts to terminate the currently running script. If the
current macro is a sub macro (i.e., was called from another macro), only the sub macro will
terminate.

This command is server side only. If not called within a try/catch block, it will terminate the
currently running script (which is usually what you want).

Macro.restart()

Restarts the current macro from the beginning. If the current macro is a sub macro, only the
sub macro will restart.

This command is server side only. If not called within a try/catch block, it will terminate the
currently running script.

Example: Looping a Macro Three Times
The following server side script, if placed at the end of a macro, will cause the macro to
repeat itself three times:

var count = 2;
if(STACK.size() != 0)
{
 count = STACK.pop();
 if(--count <= 0)
 Macro.abort();
}
STACK.push(count);
Macro.restart();

Macro.skipNextStep()

Skips the next step of the current macro. If there are no more steps left, the macro will end.

This command is server side only. If not called within a try/catch block, it will terminate the
currently running script.

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 30

C O M P O N E N T P R O P E R T Y C O M M A N D S

Component properties reduce tedium and repetition by wrapping ordinary device commands
with code to gather state, parse it and convert it to something human-readable. They also
perform the reverse to facilitate setting state.

API.getComponentPropertyValue
(componentName
,propertyName
,<responseCallbackFunction>
,<arguments...>)

Returns the current value of the property propertyName, of component componentName. If
the underlying get command has arguments, they may be passed as the last arguments to
getComponentPropertyValue(). responseCallbackFunction is for client side scripts only.
Server side scripts return the value directly.

API.setComponentPropertyValue
(componentName
,propertyName
,value
,<responseCallbackFunction>
,<arguments...>)

Sets a component property to value. responseCallbackFunction is for client side scripts
only.

Note that value must be in human-readable form. For enum properties, this means value
must be a quoted string that EXACTLY matches one of the available labels of the property.
For number properties, value must be a number within the valid range.

Example: Setting a Component Property Value (Client Side)
This example sets the Z-Wave thermostat (node id: 5) mode to “Cool” and pops up an alert
with the server's response (which should just be “OK”):

API.setComponentPropertyValue
 ("MB Z-Wave Controller"
 ,"Thermostat Mode"
 ,"Cool"
 ,function(response) {
 alert(“Server responded: “+response);
 }
 ,5);

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 31

C O M P O N E N T C O M M A N D S

These commands are available in both client and server side scripts.

API.runComponentCommand(componentName, commandName, arguments...)

Runs the command named commandName belonging to the component named
componentName.

If the command uses a command generator, any arguments after commandName will be
passed to the command's generator function (if it has one). Otherwise, any additional
arguments will be ignored. Currently, up to five arguments are supported.

The return value of runComponentCommand() is an array of Java bytes. If the command is
set to return a response, the bytes will be the exact device response (HTTP commands will
only return the response body). Otherwise, the return value will contain the ASCII characters
“OK”.

Example: Running Component Commands (Server Side)
This example will instruct the component named “Receiver” to run the command named “Set
Volume”, passing the argument 50:

API.runComponentCommand("Receiver", "Set Volume", 50);

This example will retrieve the current status of video input 1 on the component “Kubincam”
and print it to the console log:

var response = API.runComponentCommand
 ("Kubincam","Get Input Status",1);
print("Video input is :"+response);

Example: Running Component Commands (Client Side)
This example will instruct the component named “Doug's Showroom Russound” to execute
the command “MM Select Menu Item” with parameters 4, 1 and 1. After the command has
been executed and a response returned, the function updateNavigation() will be called with
the response:

API.runComponentCommand
(“Doug's Showroom Russound”
,"MM Select Menu Item"
,updateNavigation
,4,1,1);

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 32

M A T R I X C O M M A N D S

The matrix commands are available both server and client side.

API.matrixGetDescription(matrixName)

Retrieves a description of the given matrix, specified by matrixName.

Server side, the return value will be a JSON string that you must parse with JSON.parse() to
turn into an object. On the client side, the response will already be parsed for you before it is
passed to your handler function. The response object will follow this template:

{ "name":"Matrix Name",
"id":1,
"srcPorts": [

{
"name":"Source Port 1 Name",
"port":12,
"id": 1

},
{

"name":"Source Port 2 Name",
"port":13,
"id": 2

}
],
"dstPorts": [

{
"name":"Destination Port 1 Name",
"port":14,
"id": 3

},
{

"name":"Destination Port 2 Name",
"port":15,
"id": 4

}
]

}

The order that the ports appear in the object will match the order they appear in Remote
Builder.

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 33

API.matrixSetCurrentSourceByName

(matrixName

,dstPortName

,srcPortName)

Tells the matrix named matrixName to connect the destination port named dstPortName to
the source port named srcPortName.

API.matrixGetCurrentSourceName(matrixName, dstPortName)

Gets the name of the source port that the destination port named dstPortName is currently
connected to, on the matrix named matrixName. If the source port could not be determined,
the value “UNKNOWN” will be returned instead. This will normally only happen if the
destination port is not connected to any source, or the matrix configuration is out of sync with
the installation.

On server-side scripts, the return value will be the source port name. On client-side scripts,
the source port name will be passed as the first argument to the handler function.

Example: Setting the current source port of a destination on the matrix
The following will connect the source port named “TiVo” to the destination port named “Master
TV” on the matrix “Main”:

API.matrixSetCurrentSourceByName("Main","Master TV","TiVo");

Example: Getting the current source port of a destination on the matrix (Server Side)
The following will display the current source of the “Master TV” destination port on the matrix
“Main”:

var port = API.matrixGetCurrentSourceName("Main","Master TV");
print("The current port is: "+port);

Example: Getting the current source port of a destination on the matrix (Client Side)
The following will print the current source of the port named “Master TV” on the matrix “Main”
to the browser console log:

API.matrixGetCurrentSourceName
("Main"
,"Master TV"

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 34

,function(response,matrix,destination) {
console.log

("Port "+destination
+" on matrix "+matrix
+" is currently connected to source port "+response);

});

API.matrixGetCurrentDestinationNames

(matrixName

,srcPortName

,<responseCallbackFunction>)

Returns an array of the names (as strings) of the destination ports on matrix matrixName that
are currently connected to the source port named srcPortName. The array will be empty (i.e.,
its length property will === 0) if there are no destination ports currently connected to the
given source port.

As always, the response is directly returned on server side scripts, and passed as the first
argument to the responseCallbackFunction on client side scripts.

API.matrixConnectToDefaultVLANByName(matrixName, dstPortName)

This special function takes the given destination port off of the matrix matrixName and places
it back onto the default VLAN for the matrix switch. Doing so allows the port to communicate
normally with all non-matrix ports on the switch. This communication will be immediately
broken when the destination port is set to a matrix source port again.

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 35

I N T E R N A L A P I S

Internal APIs bridge the gap between the proprietary APIs/protocols of certain devices and a
standard set of API commands. They arose out of the need to control devices that require
authorization and/or need device state to be cached for performance reasons or due to
service limitations.

Internal APIs are built-in to the system and may be activated in Remote Builder by choosing
"Add Internal API..." from the "Installation" menu while an installation is open. After following
the API specific setup procedures, the API exposes access to any devices it finds through
device-type-specific APIs documented in this manual. The set of devices and the APIs they
support appear in the "Devices" tab when the Internal API is selected:

Support for new Internal APIs will be added to the system based on demand. Contact your
dealer to request an Internal API be created for a particular type of device.

The Internal API system was added to platform version 4.4.

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 36

Internal API Basics
First, some terminology:

Internal API
An Internal API provides access to all devices that use a particular, proprietary protocol or
API. For example, the "Nest API" is an Internal API that provides control (as of 4.4) of all Nest
thermostat and smoke+CO alarm devices attached to a single Nest account. Internal APIs are
somewhat analogous to Drivers. The biggest differences are:

1) Internal APIs are built-in and always available to use within Remote Builder. Whereas
Drivers must be created from scratch and/or loaded from a repository of installation XMLs.

2) The set of commands exposed by Internal APIs is entirely pre-determined by the types of
devices they provide access to. In other words, a thermostat is always controlled the same
way when an Internal API is available for it, regardless of brand or model. Drivers, on the
other hand, are not required to follow any particular convention.

Internal Device
An Internal Device is the name of a device discovered (or manually setup) by an Internal API
that can be controlled using Physics Systems API commands. For example, the previous
screenshot depicts an installation where the internal Nest API has discovered and made
available three internal devices – the "Kid's Room" thermostat, the "Hallway" thermostat and
the "Bedroom" smoke+CO alarm.

Internal Devices are somewhat analogous to Components. The biggest differences are:

1) When possible, they are automatically discovered and made available for control, not
manually created

2) Instead of using Component API commands to control Internal Devices, you must use the
appropriate Internal Device API for that type of device.

Internal Device API
An Internal Device API is the API used to control a particular type of Internal Device. For
example, the Internal Device API used to control ALL thermostats is called "Thermostat." As
new Internal APIs are added to provide support for other brands of thermostats, they will
always be controllable with the same "Thermostat" API.

Future versions of the platform are planned to allow voice intents to automatically control all
Internal Devices of the system by device name.

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 37

Internal Device API Basics
All Internal Devices have at least two intrinsic properties: a name and a device ID. The name
is determined by discovery. It is generally the same name that is assigned using the device's
proprietary software or app. It is the responsibility of the installer to ensure that the
name of each device is unique within the set of all devices of a particular type . For
example, there should never be two thermostats in the same system named "Bob." However,
there may be a thermostat named "Bob" and a light named "Bob."

To allow for ambiguous situations, or the case where the end user frequently changes the
names of devices, you may also control devices by their ID. The IDs of each device are
guaranteed to persist between reboots and reloadings of the same XML. In any Internal
Device API command that follows, wherever you are required to specify the name of the
device in the command, you may instead use the device's ID.

Names are case insensitive, device IDs are case sensitive.

getPropertiesJSON()
ALL Internal Device APIs support at least one command in both server and client side script:
getPropertiesJSON(). This command retrieves ALL of the current properties of the given
device and returns a simple JSON object representation of those properties and their current
values. The properties that will be present are specified in the respective documentation for
that API.

If a particular property is not supported by the underlying hardware, it will not be present in
the response. Thus it will match with the JavaScript keyword undefined. If the current value
of a property is unknown, but the property is otherwise supported, the property will be present
but its value will be null.

This can be used to discover the capabilities of the device!

NOTE: in server side script, the response from getPropertiesJSON() must be parsed into an
object via JSON.parse() before using it. In client side script, this step is done for you
automatically.

getPropertiesJSON() is the recommend way to retrieve more than one value pertaining to a
device at a time. Getting property values individually executes separate commands (and
network connections), whereas getPropertiesJSON() combines all properties into a single
command and network call.

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 38

Example: Using getPropertiesJSON() to do Device Capability Detection
In this example, we have a light named "Bob" that is dimmable and able to change its color,
but does not support getting or setting a color temperature.

Thus, its properties would include "on", "brightness" and "color", but not "colorTtemperature."

The following server side script checks if the light supports the brightness property (e.g. is
dimmable). It also verifies that the light does not support changing its color temperature:

var properties = JSON.parse(API.Light.getPropertiesJSON("Bob"));

if(properties.brightness !== undefined) {
 print("Bob the light supports the brightness property!");

 if(properties.brightness !== null) {
 print
 ("Bob the light's brightness is currently "+properties.brightness);
 }
}

if(properties.colorTemperature !== undefined) {
 // because we said that "Bob" does not support color temperature
 print("THIS SHOULD NEVER PRINT!");
}

Here is the client-side script version of the previous. Note again that we do NOT need to
parse the response first with client-side scripts:

API.Light.getPropertiesJSON("Bob",function(properties) {
 if(properties.brightness !== undefined) {
 console.log("Bob the light supports the brightness property!");

 if(properties.brightness !== null) {
 console.log
 ("Bob the light's brightness is currently "+properties.brightness);
 }
 }

 if(properties.colorTemperature !== undefined) {
 // because we said that "Bob" does not support color temperature
 console.log("THIS SHOULD NEVER PRINT!");
 }
});

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 39

Example: Using getPropertiesJSON() With Devices that Support Multiple APIs
If a device ever supports more than one type of API, the properties returned by
getPropertiesJSON() will only apply to the particular Internal Device API you use. For
example, if you had a hypothetical device named "Bob" that had the features of a thermostat
AND a fire alarm, to retrieve the thermostat properties you would use:

API.Thermostat.getPropertiesJSON("Bob");

To retrieve the fire alarm properties, you would use:

API.FireAlarm.getPropertiesJSON("Bob");

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 40

I N T E R N A L D E V I C E A P I : T H E R M O S T A T

This API is available for Internal Devices that support the "Thermostat" API.

JSON Properties
The following properties are returned by getPropertiesJSON():

Property Description Possible Values / Notes

mode The current HVAC mode "Heat" – the thermostat is
running in heat-only mode.

"Cool" – the thermostat is
running in cool-only mode.

"Both" – the thermostat will
apply heat and cooling as needed
to keep the temperature within a
specific range.

"Eco" – the thermostat is in eco
or energy saver mode.

"Off" – the thermostat is off.

scale The temperature scale in use by the
thermostat

"F" – for Fahrenheit
"C" – for Celsius

ambientTemperature The current temperature measured by the
thermostat

Value will be in the thermostat's
temperature scale specified by
the scale property.

humidity The current humidity measured by the
thermostat.

A percent (between 0-100).

targetTemperature The current target temperature of the
thermostat.

Only applicable if the thermostat
is in "Heat" or "Cool" mode.

targetTemperatureHigh The highest allowed temperature before
cooling will be started.

Only applies when thermostat is
in "Both" mode. Not supported
by all hardware.

targetTemperatureLow The lowest allowed temperature before
heating will be started.

Only applies when thermostat is
in "Both" mode. Not supported
by all hardware.

ecoTemperatureHigh The highest temperature the thermostat
will allow when in energy saving mode.

Only applies when thermostat is
in "Eco" mode. Not supported by

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 41

all hardware.

ecoTemperatureLow The lowest temperature the thermostat will
allow when in energy saving mode.

Only applies when thermostat is
in "Eco" mode. Not supported by
all hardware.

API Commands
API.Thermostat.isModeAllowed(name, mode)

Returns true if the specified mode is currently supported by the thermostat with name or ID
name. Valid mode values are specified in the properties table above.

API.Thermostat.getMode(name)

Returns the current mode of the thermostat with name or ID name.

API.Thermostat.setMode(name, mode)

Sets the current mode of the thermostat with name or ID name. Mode is nmay be "He

API.Thermostat.getScale(name)

Gets the temperature scale currently in use by the thermostat with name or ID name.

API.Thermostat.setScale(name, scale)

Sets the temperature scale used by the thermostat with name or ID name. Not supported by
all thermostats. Value scale values are specified in the properties table above.

API.Thermostat.getAmbientTemperature(name, scale)

Returns the current temperature measured by the thermostat with name or ID name, in units
of the given temperature scale.

API.Thermostat.getHumidity(name)

Returns the current humidity measured by the thermostat with name or ID name. In percent,
between 0 and 100. Not supported by all thermostats.

API.Thermostat.getTargetTemperature(name, scale)

Returns the current target temperature of the thermostat with name or ID name, in units of the
given temperature scale.

API.Thermostat.setTargetTemperature(name, temperature, scale)

Sets the current target temperature of the thermostat with name or ID name. Temperature is
expected to be in units specified by scale.

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 42

API.Thermostat.getTargetTemperatureHigh(name, scale)

Gets the current maximum temperature of the thermostat with name or ID name.
Temperature will be returned in units of the given scale. Not all thermostats support this
feature.

API.Thermostat.setTargetTemperatureHigh(name, temperature, scale)

Sets the current maximum temperature of the thermostat with name or ID name.
Temperature is expected to be in units specified by scale. Not all thermostats support this
feature, and high/low temperatures may not apply depending on the current thermostat mode.

API.Thermostat.getTargetTemperatureLow(name, scale)

Gets the current minimum temperature of the thermostat with name or ID name. Temperature
will be returned in units of the given scale. Not all thermostats support this feature.

API.Thermostat.setTargetTemperatureLow(name, temperature, scale)

Sets the current minimum temperature of the thermostat with name or ID name.
Temperature is expected to be in units specified by scale. Not all thermostats support this
feature, and high/low temperatures may not apply depending on the current thermostat mode.

API.Thermostat.getEcoTemperatureHigh(name, scale)

Gets the current maximum eco mode temperature of the thermostat with name or ID name.
Temperature will be returned in units of the given scale. Not all thermostats support this
feature.

API.Thermostat.getEcoTemperatureLow(name, scale)

Gets the current minimum eco mode temperature of the thermostat with name or ID name.
Temperature will be returned in units of the given scale. Not all thermostats support this
feature.

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 43

I N T E R N A L D E V I C E A P I : F I R E A L A R M

This API is available for Internal Devices that support the "FireAlarm" API.

JSON Properties
The following properties are returned by getPropertiesJSON():

Property Description Possible Values / Notes

batteryState The current state of the battery "OK" – the battery is fine.

"Replace" – the battery needs to
be replaced.

alarmStateSmoke The current alarm state of the smoke detector. "OK" – no smoke detected.

"Warning" – some smoke
detected.

"Emergency" – smoke detected,
GTFO

alarmStateCO The current alarm state of the carbon monoxide
(CO) detector.

"OK" – no CO detected.

"Warning" – some CO detected.

"Emergency" – CO detected,
GTFO

API Commands
API.FireAlarm.getBatteryState(name)

Returns the current state of the battery for the fire alarm with name or ID name.

API.FireAlarm.getAlarmState(name, alarmType)

Returns the current alarm state of the fire alarm with name or ID name. The type of alarm is
specified by alarmType. Current supported values are "Smoke" for smoke alarms and "CO"
for carbon monoxide alarms. Some fire alarms support only one type.

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 44

I N T E R N A L D E V I C E A P I : L I G H T

This API is available for Internal Devices that support the "Light" API.

JSON Properties
The following properties are returned by getPropertiesJSON():

Property Description Possible Values / Notes

on The powered on state of the light true or false

brightness The current dimmer level / brightness of the
light.

A floating point value between
0.0 and 100.0, inclusive. 0.0
indicates the light is powered off.

Not all lights support dimming.

color The current color of the light. An RGB value, with each color
component ranging from 0.0 to
1.0, inclusive.

The color property has three
child properties: red, green and
blue.

Not all lights support changing
color.

colorTemperature The current color temperature of the light. A color temperature, in mireds.
This unit is simply 1,000,000
divided by the color temperature
in Kelvin. For example, a color
temperature of 6500K is about
154 mired.

Not all lights support changing
the color temperature.

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 45

API Commands
API.Light.isOn(name)

Returns whether the light with name or ID name is on.

API.Light.setOn(name, on)

Turns the light with name or ID name on or off, depending on the value of on.

API.Light.getBrightness(name)

Returns the current brightness of the light with name or ID name.

API.Light.setBrightness(name, brightness)

Sets the current brightness of the light with name or ID name. Setting the brightness to 0
turns the light off, setting it to any other value with automatically turn it on.

API.Light.getColorRGB(name)

Returns the current color of the light with name or ID name. The color is returned as a simple
RGB object with the properties red, green and blue.

For example, the following server-side snippet displays the currently color of the light named
"Bob":

var color = API.Light.getColorRGB("Bob");

print("Red: "+color.red+", Green: "+color.green+", Blue: "+color.blue);

API.Light.setColorRGB(name, red, green, blue)

Sets the red, green and blue color values of the light with name or ID name. Remember,
color values range between 0.0 and 1.0, inclusive.

API.Light.getColorTemperature(name)

Retrieves the current color temperature of the light with name or ID name.

API.Light.setColorTemperature(name, temperature)

Sets the current color temperature of the light with name or ID name. Remember, color
temperature is specified in units of mireds. To convert from Kelvin to mireds and vice versa,
divide 1,000,000 by the value.

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 46

I N T E R N A L D E V I C E A P I : T V
This API is available for Internal Devices that support the "TV" API.

JSON Properties
The following properties are returned by getPropertiesJSON():

Property Description Possible Values / Notes

on The powered on state of the
TV.

true or false.

input The current input. The name of the input type followed by a
number e.g. HDMI1, Component3, AV2, etc.
Names are case insensitive.

If no number is part of the name, that is
interpreted as the first input of that particular
type.

Not all TVs support getting/setting the input.

volume The current volume of the TV. An integer between 1 and volumeMaximum,
inclusive.

Not all TVs support changing the volume.

volumeMaximum The maximum volume of the
TV.

An integer. This property is necessary because
not all TVs support the same range of volumes.
For instance, WebOS TVs support volumes up
to 100.

muted The current mute status of the
TV.

true or false.

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 47

API Commands
API.TV.isOn(name)

Returns whether the TV with name or ID name is on.

API.TV.setOn(name, on)

Turns the TV with name or ID name on or off, depending on the value of on.

API.TV.getInput(name)

Returns the current input of the TV with name or ID name.

API.TV.setInput(name, input)

Sets the current input of the TV with name or ID name. Input names are case insensitive e.g.
"HDMI3", "av1", etc.

API.TV.getVolume(name)

Returns the current volume of the TV with name or ID name.

API.TV.setVolume(name, volume)

Sets the current volume of the TV with name or ID name. Volumes range from 1 to the
maximum volume for the particular TV. Maximum volume can be determined via
getVolumeMaximum().

API.TV.volumeUp(name)

Increases the volume by one on the TV with name or ID name.

API.TV.volumeDown(name)

Decrease the volume by one on the TV with name or ID name.

API.TV.getVolumeMaximum(name)

Returns the maximum volume of the TV with name or ID name.

API.TV.isMuted(name)

Returns whether the TV with name or ID name is currently muted.

API.TV.setMuted(name, muted)

Mutes or unmutes the TV with name or ID name, depending on the value of muted.

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 48

API.TV.toggleMute(name)

Toggles the mute status of the TV with name or ID name.

API.TV.displayMessage(name, message)

Displays the given message on the TV with name or ID name. The way the message is
displayed is device specific.

API.TV.displayMessageWithImageById(name, message, imageId)

Displays the given message on the TV with name or ID name. In addition, the image with ID
imageId will be displayed with the message. The way the message is displayed is device
specific. The maximum size and type of image is also device specific.

For WebOS TVs, you should keep the image size (in bytes) below 100KB and use JPEG or
PNG image formats.

Example: Displaying a Pizza on a WebOS TV
The following example assumes the installation has been loaded with the image of a pizza,
and the ID of that image is 4. In addition, a WebOS TV has been setup and has the name
"Birrie TV":

The following script will display the message "Pizza!" with a pizza icon on a WebOS TV:

API.TV.displayMessageWithImageById("Birrie TV","Pizza!",4);

API.TV.launchBrowser(name, URL)

Opens the given URL on the built-in browser of the TV with name or ID name.

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 49

S E R V E R S I D E O N L Y C O M M A N D S

API.runCommanderCommand(commanderName, commandName, arguments...)

This command functions similar to runComponentCommand(), except it runs commander
commands.

API.addDynamicResource(name, resourceBytes, resourceType)

Makes the given resource available at /dynamic/name. resourceBytes must be a Java (not
javascript) byte array (i.e., a byte[]). resourceType should specify the MIME type of the data
(i.e., “image/jpeg”).

Currently, dynamic resources may consume up to 16MB. If an attempt is made to add another
resource after 16MB has been used, the least recently used resources will be purged, one at
a time, until enough space is available for the new resource. This space limitation may
become configurable in the future.

API.getDynamicResourceData(name)

Returns the data (resourceBytes) that was previously stored as a dynamic resource by the
given name. The return value will be a Java byte[]. Returns null if no resource with that name
is available.

API.getDynamicResourceType(name)

Returns the resourceType value of the dynamic resource with the given name. Returns null
if no resource with that name is available.

API.removeDynamicResource(name)

Removes the dynamic resource with the given name from the pool.

API.sendEmail(recipient, subject, message)

Sends an email message to the given recipient, with the given subject. This functionality will
only operate on servers that have an active PSNET account.

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 50

C L I E N T S I D E O N L Y C O M M A N D S

These commands are only available in client side scripts.

API.setLabelValue(labelScriptId, value)

Changes the currently displayed value of the label with script ID labelScriptID to the given
string. value may be HTML. The script ID is set in the properties window for the label
(available by double-clicking the label in Remote Builder's page editor).

For example, to change the text of the label with id “status” to “OFF”:

API.setLabelValue("status","OFF");

API.setLabelImage(labelScriptId, imageId)

Changes the current image of the label with script ID labelScriptID to the image with image
ID imageID. Image IDs are shown in the main image list (shown by clicking the “Images” tree
item in Remote Builder).

For example, to change the image of the label with id “status” to image ID #45:

API.setLabelImage("status",45);

API.setLabelImageURL(labelScriptId, imageURL)

Changes the current image of the label with script ID labelScriptID to the image at the given
URL.

For example, to change the image of the label with id “picture” to our logo:

API.setLabelImageURL
("picture"
,"http://physicssystems.com/images/logo164x75.png");

API.setLabelVisible(labelScriptId, visible)

Shows or hides the specified label. visible must either be true or false.

API.setButtonVisible(buttonScriptId, visible)

Shows or hides the specified button. visible must either be true or false.

The following example makes the button with script id “power” visible:

API.setButtonVisible("power",true);

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com
http://physicssystems.com/images/logo164x75.png

Physics Systems Script API Page 51

API.setButtonLabel(buttonScriptId, label)

Sets the button label (text) of the button with script id buttonScriptId.

API.setButtonImages(buttonScriptId, upImageId, downImageId)

Sets the up and down images for the button with script id buttonScriptId. The IDs for the up
and down image can be determined in Remote Builder in the master list of images.

API.setSliderVisible(sliderScriptId, visible)

Shows or hides the specified slider. visible must either be true or false.

API.jumpToPage(pageScriptId)

Immediately jumps to the page with the given script id.

API.goBack()

Goes back to the previous page in the page history. Note, this is the page history maintained
by the server, not the browser's page history. Currently, the history length is set to 10 pages.

API.logout()

Immediately logs out the current user. NOTE: logging out does not cause the current page to
reload. This can cause confusing behavior if the current page uses functionality that requires
the user to be logged in. To avoid confusing the user you should load another page after
logging out. For example, to logout the current user and then send them to the home page:

API.logout(function() {
window.location = '/';

});

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 52

Slider commands
The following commands operate on sliders on the client side.

API.Slider.setValue(sliderScriptId, value)

Sets the current value for the slider with script ID sliderScriptId. The value will be
automatically truncated to the appropriate precision, if necessary. For example, if the "Step" of
the slider is 0.5, and value is 0.51483, it will be truncated to 0.5.

API.Slider.assignProperty(sliderScriptId, apiName, deviceName,
propertyName)

This extremely powerful function assigns an Internal Device property directly to the slider with
script ID sliderScriptId. The current value will be automatically retrieved. Sliding the thumb
will cause the current value to be updated.

apiName specifies which Internal Device API should be used to access the device with the
given name or ID of deviceName. Neither value is case sensitive e.g. "Light" and "light" are
both acceptable for referring to the "Light" Internal Device API. propertyName specifies
which property to bind the slider to.

Sliders that have been assigned properties will honor the values of the "Overrides" set in
Remote Builder.

Currently Assignable Internal Device API Properties
These are the properties that are currently assignable to sliders. More properties will be
added in the future:

Internal Device API Assignable Properties

Light brightness

TV volume

Example: using API.Slider.assignProperty()
Assuming there is a light in the system named "Bob", the following snippet will assign the
slider with script ID of "sliderBob" to the brightness:

API.Slider.assignProperty("sliderBob", "light", "Bob", "brightness");

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 53

D Y N A M I C P A G E L O A D I N G

One of the new features added to the 2.0 platform is the ability to load pages within other
pages and display them dynamically. This enables you to create even more powerful
interfaces and drastically reduce the amount of time needed to develop multi-room systems.

For example, if multiple rooms in an installation share the same source equipment, you only
need to create one page with controls for each source and display them as needed on the
per-room pages.

The basic steps for using dynamic pages are:

1. Create a page to be loaded dynamically in Remote Builder and assign it a script ID.
We recommend using the prefix “p_” in the ID. For example, p_controls or
p_airConditioning.

2. Create a handler function for loadPage() that will be called when the page is loaded
and ready to be shown. This handler function should store a reference to the loaded
page and display it. See the example further down in this section.

3. Call loadPage() using the previously set page script ID and handler function

4. If the page should no longer be displayed but should be quickly accessible, use
hidePage() to hide it.

API.loadPage(pageScriptID, handler)

Loads the page with script ID pageScriptID for later inline display on the current page. When
the page has been loaded it will be passed as the first argument to handler. Pages are
initially invisible after being loaded and their Enter actions will not be run until showPage() is
called.

API.showPage(page, x, y, zIndex)

After a page has been loaded via loadPage(), it can be displayed using showPage(). The
argument page must be the argument previously passed to handler by loadPage(). The x
and y arguments are optional and indicate the absolute x and y position in the client space to
display the page in. The zIndex is also an optional argument (but can not be specified unless
x and y are also specified). It specifies what z-index the page should be displayed at, with
higher z-indexes appearing on top of lower numbered z-indexes. It is only necessary to
specify the x and y coordinates and z-index once after loading a page. These attributes will be
retained after hidePage() is called (but will be lost if unloadPage() is used to unload the
page).

If a loaded page has Enter actions, they will be run the very first time showPage() is called
after the page has been loaded. Subsequent calls to showPage() for that page will not cause
the Enter actions to be-run unless the page is unloaded first via unloadPage() and then re-
loaded.

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

Physics Systems Script API Page 54

Example: Loading and Displaying a Page Dynamically (Client Side)
The following example loads the page with script ID “p_controls” and displays it 100 pixels
from the right and 120 pixels from the top of the screen, at z-index 5:

var g_controlsPage = null; // This global variable will store the loaded page

function controlsLoaded(controlsPage) {
// Store the returned page in a global variable so we
// can use it later to hide the page:
g_controlsPage = controlsPage;
// Show the page at 100 pixels from the right, 120 from the top, z-index 5:
API.showPage(g_controlsPage,100,120,5);

}

// Load the page and use controlsLoaded() for the response handler function:
API.loadPage(“p_controls”,controlsLoaded);

API.makePageBackgroundTransparent(page)

Sometimes it is not desirable to display the background of a dynamically loaded page. For
instance, you may design a dynamically loaded page to just be a set of controls that you want
to blend into the background of the main page. Use makePageBackgroundTransparent() to
hide the background of a page previously loaded via loadPage().

API.hidePage(page)

Hides a dynamically loaded page previously shown via showPage(). Does NOT run the
Leave actions of the page. A page hidden with hidePage() can be shown again by calling
showPage().

API.unloadPage(page)

This method performs three actions:

1. Hides the given page, if it is currently visible

2. Runs the Leave actions of the given page, if any

3. Completely removes the given page from the HTML DOM. All scripts that were part of
the loaded page will be removed and no longer accessible by the main page, as well
as any buttons, sliders, labels, widgets, etc.,

NOTE: it is not ordinarily necessary to unload a page after you are done using it unless you
are loading dozens of large, complicated pages dynamically and you are experiencing
browser instability. This method is provided primarily to enable you to run the Leave actions of
a dynamically loaded page.

Physics Systems LLC support@physicssystems.com
5004 East Fowler Avenue Suite C307 VOICE (614) 434-6015
Tampa, Florida 33617 FAX (614) 633-1073

mailto:support@physicssystems.com

	Scripting Overview
	Client Side Scripting
	Server Side Scripting
	Synchronous vs. Asynchronous
	Advanced Example: Running a Command Inside a Thread (Server Side)
	Printing Messages To Remote Builder's Console Log
	Example: Printing To Remote Builder's Console Log (Server Side)

	Exception Handling
	Server Side Exceptions
	Example: Exception Handling in Server Side Scripts
	Client Side Exceptions
	Example: Checking for Exceptions in Client Side Scripts
	The Exception Object
	getType()
	getMessage()
	Exception Types
	Access Denied
	Command Failed
	Command Not Supported
	Does Not Exist
	Invalid Command
	Invalid Destination
	Timed Out

	Basic API Commands
	API.getUsername()
	API.wolWakeUp(physicalAddress)

	Alerts
	How Alerts Reach Users
	Alert Properties
	Testing Alert Notifications
	API.testNotifications()
	Temporarily Muting Alert Notifications
	API.muteNotifications(duration)
	Generating Alerts
	API.alert(typeName, deviceName, message)
	Example: Generating an Alert (Server Side)
	Example: Generating an Alert and Handling Errors (Client Side)

	The Stack
	STACK.push(value)
	STACK.pop()
	STACK.peek()
	STACK.size()
	Example: Using the Stack (Server Side)
	Command Responses on the Stack
	Example: Working With Command Responses (Server Side)

	Global Values
	API.saveGlobalValue(name, value)
	API.loadGlobalValue(name)
	API.deleteGlobalValue(name)
	Example: Saving and Loading Global Values (Client Side)
	Example: Saving and Loading Global Values (Server Side)

	GPIO Commands
	GPIO.getPinState(commanderName, pin)
	Example: Displaying the State of a GPIO Pin (Client Side)
	Example: Displaying the State of a GPIO Pin (Server Side)

	Relay Commands
	Relay.turnOn(commanderName, relayNumber)
	Relay.turnOff(commanderName, relayNumber)
	Relay.toggle(commanderName, relayNumber)
	Relay.momentaryToggle(commanderName, relayNumber, duration)
	Relay.momentaryOnOff(commanderName, relayNumber, duration)
	Relay.momentaryOffOn(commanderName, relayNumber, duration)
	Relay.isRelayOn(commanderName, relayNumber)

	Timer Commands
	Timer Ownership
	Timer.start(timerName, unitOfTime, duration, macroName)
	Timer.cancel(timerName)
	Timer.increment(timerName, unitOfTime, amount)
	Timer.decrement(timerName, unitOfTime, amount)
	Timer.getTimeLeft(timerName, unitOfTime)
	Example: Displaying the Date and Time when a Timer Will Run (Client Side)

	Macro Commands
	Macro.run(macroName)
	Client Side

	Example: Message Passing to and from Macros (Client Side)
	Server Side

	Macro.abort()
	Macro.restart()
	Example: Looping a Macro Three Times
	Macro.skipNextStep()

	Component Property Commands
	API.getComponentPropertyValue (componentName ,propertyName ,<responseCallbackFunction> ,<arguments...>)
	API.setComponentPropertyValue (componentName ,propertyName ,value ,<responseCallbackFunction> ,<arguments...>)
	Example: Setting a Component Property Value (Client Side)

	Component Commands
	API.runComponentCommand(componentName, commandName, arguments...)
	Example: Running Component Commands (Server Side)
	Example: Running Component Commands (Client Side)

	Matrix Commands
	API.matrixGetDescription(matrixName)
	API.matrixSetCurrentSourceByName
	(matrixName
	,dstPortName
	,srcPortName)
	API.matrixGetCurrentSourceName(matrixName, dstPortName)
	Example: Setting the current source port of a destination on the matrix
	Example: Getting the current source port of a destination on the matrix (Server Side)
	Example: Getting the current source port of a destination on the matrix (Client Side)
	API.matrixGetCurrentDestinationNames
	(matrixName
	,srcPortName
	,<responseCallbackFunction>)
	API.matrixConnectToDefaultVLANByName(matrixName, dstPortName)

	Internal APIs
	Internal API Basics
	Internal API
	Internal Device
	Internal Device API

	Internal Device API Basics
	getPropertiesJSON()
	Example: Using getPropertiesJSON() to do Device Capability Detection
	Example: Using getPropertiesJSON() With Devices that Support Multiple APIs

	Internal Device API: Thermostat
	JSON Properties
	API Commands
	API.Thermostat.isModeAllowed(name, mode)
	API.Thermostat.getMode(name)
	API.Thermostat.setMode(name, mode)
	API.Thermostat.getScale(name)
	API.Thermostat.setScale(name, scale)
	API.Thermostat.getAmbientTemperature(name, scale)
	API.Thermostat.getHumidity(name)
	API.Thermostat.getTargetTemperature(name, scale)
	API.Thermostat.setTargetTemperature(name, temperature, scale)
	API.Thermostat.getTargetTemperatureHigh(name, scale)
	API.Thermostat.setTargetTemperatureHigh(name, temperature, scale)
	API.Thermostat.getTargetTemperatureLow(name, scale)
	API.Thermostat.setTargetTemperatureLow(name, temperature, scale)
	API.Thermostat.getEcoTemperatureHigh(name, scale)
	API.Thermostat.getEcoTemperatureLow(name, scale)

	Internal Device API: FireAlarm
	JSON Properties
	API Commands
	API.FireAlarm.getBatteryState(name)
	API.FireAlarm.getAlarmState(name, alarmType)

	Internal Device API: Light
	JSON Properties
	API Commands
	API.Light.isOn(name)
	API.Light.setOn(name, on)
	API.Light.getBrightness(name)
	API.Light.setBrightness(name, brightness)
	API.Light.getColorRGB(name)
	API.Light.setColorRGB(name, red, green, blue)
	API.Light.getColorTemperature(name)
	API.Light.setColorTemperature(name, temperature)

	Internal Device API: TV
	JSON Properties
	API Commands
	API.TV.isOn(name)
	API.TV.setOn(name, on)
	API.TV.getInput(name)
	API.TV.setInput(name, input)
	API.TV.getVolume(name)
	API.TV.setVolume(name, volume)
	API.TV.volumeUp(name)
	API.TV.volumeDown(name)
	API.TV.getVolumeMaximum(name)
	API.TV.isMuted(name)
	API.TV.setMuted(name, muted)
	API.TV.toggleMute(name)
	API.TV.displayMessage(name, message)
	API.TV.displayMessageWithImageById(name, message, imageId)
	Example: Displaying a Pizza on a WebOS TV
	API.TV.launchBrowser(name, URL)

	Server Side Only Commands
	API.runCommanderCommand(commanderName, commandName, arguments...)
	API.addDynamicResource(name, resourceBytes, resourceType)
	API.getDynamicResourceData(name)
	API.getDynamicResourceType(name)
	API.removeDynamicResource(name)
	API.sendEmail(recipient, subject, message)

	Client Side Only Commands
	API.setLabelValue(labelScriptId, value)
	API.setLabelImage(labelScriptId, imageId)
	API.setLabelImageURL(labelScriptId, imageURL)
	API.setLabelVisible(labelScriptId, visible)
	API.setButtonVisible(buttonScriptId, visible)
	API.setButtonLabel(buttonScriptId, label)
	API.setButtonImages(buttonScriptId, upImageId, downImageId)
	API.setSliderVisible(sliderScriptId, visible)
	API.jumpToPage(pageScriptId)
	API.goBack()
	API.logout()
	Slider commands
	API.Slider.setValue(sliderScriptId, value)
	API.Slider.assignProperty(sliderScriptId, apiName, deviceName, propertyName)
	Currently Assignable Internal Device API Properties

	Example: using API.Slider.assignProperty()

	Dynamic Page Loading
	API.loadPage(pageScriptID, handler)
	API.showPage(page, x, y, zIndex)
	Example: Loading and Displaying a Page Dynamically (Client Side)
	API.makePageBackgroundTransparent(page)
	API.hidePage(page)
	API.unloadPage(page)

